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Abstract

The results of a Phase 1 trial of autologous mitochondrial transplantation for the treatment of acute ischemic stroke

during mechanical thrombectomy are presented. Standardized methods were used to isolate viable autologous mito-

chondria in the acute clinical setting, allowing for timely transplantation within the ischemic window. No significant

adverse events were observed with the endovascular approach during reperfusion therapy. Safety outcomes in study

participants were comparable to those of matched controls who did not undergo transplantation. This study represents

the first use of mitochondrial transplantation in the human brain, highlighting specific logistical challenges related to the

acute clinical setting, such as limited tissue samples and constrained time for isolation and transplantation. We also

review the opportunities and challenges associated with further clinical translation of mitochondrial transplantation in

the context of acute cerebral ischemia and beyond.
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Introduction

Acute ischemic stroke (AIS) is a major cause of disabil-

ity and death worldwide.1 While prompt reperfusion
can restore blood flow to ischemic brain tissue and
prevent or reduce stroke severity, it may also paradox-
ically cause secondary ischemic/reperfusion injury

(IRI).2 The interruption of oxygen supply during AIS
impairs mitochondrial oxidative phosphorylation,
leading to adenosine triphosphate (ATP) depletion
and the harmful accumulation of reactive oxygen spe-

cies (ROS). Subsequent reperfusion exacerbates this
condition by increasing ROS production and triggering
inflammatory responses, further destabilizing mito-
chondrial function and contributing to neuronal

injury and death.3

Extensive research on neuroprotective agents has

sought to mitigate the detrimental effects of IRI includ-
ing targeting NMDA receptors, free radical scavengers,
and immune system modulators.4–6 However, these
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strategies have failed to demonstrate consistent clinical
efficacy due to a narrow therapeutic window, difficul-
ties in drug delivery, and the complexity of the ischemic
cascade, which involves multiple overlapping and inter-
dependent pathways.7

Current AIS reperfusion strategies8 including
thrombolytic therapy and mechanical thrombectomy
focus primarily on achieving arterial recanalization to
restore blood flow, which does not mitigate cellular and
molecular injury caused by the interruption of oxygen
supply and subsequent IRI. Recently, mitochondrial
transplantation has emerged as a potential adjunct to
reperfusion to address this critical need. Successful
trials in cardiac ischemia9,10 provided the foundation
for this approach, enabled by the FDA’s Same Surgical
Procedure Exception (21 CFR 1271.15(b)).

Several developments have supported the clinical
translation of mitochondrial transplantation, as previ-
ously reviewed in detail.11 Mitochondria can transfer
from astrocytes to neurons following ischemic stroke,12

and extracellular mitochondria can survive and func-
tion within the vascular compartment13,14 without trig-
gering significant immune or damage-associated
molecular pattern responses.15 Our preclinical stud-
ies16,17 using a murine model of middle cerebral
artery occlusion have demonstrated that intra-arterial
delivery of mitochondria allows for their widespread
distribution throughout the ischemic cerebral hemi-
sphere, leading to integration into neural and glial
cells. This method significantly elevated ATP concen-
trations in ischemic tissue, reduced infarct volume, and
improved cell viability.

Together, these scientific and regulatory advance-
ments enabled the current trial. Here, we present the
safety outcomes and discuss the translational chal-
lenges that must be addressed to advance mitochondri-
al transplantation toward broader clinical application.

Methods

Trial design

This Phase 1, open-label, single-arm trial
(NCT0499835718) evaluated the safety and feasibility
of intra-arterial autologous mitochondrial transplanta-
tion in patients with AIS undergoing mechanical
thrombectomy. Results are reported in accordance
with the CONSORT Extension for Pilot and
Feasibility Trials.19

Participant selection and matching

The study enrolled adult patients with AIS from ante-
rior circulation large-vessel occlusion who were eligible
for endovascular thrombectomy and had sufficient

time for informed consent. Exclusion criteria included
contraindication to magnetic resonance imaging
(MRI), known mitochondrial disease, and hemody-
namic instability. A retrospective matching process,
conducted by a blinded database administrator, identi-
fied appropriate controls from a comprehensive stroke
center database between 2017–2024. Matching criteria
included age (�6 years), sex, National Institutes of
Health Stroke Scale (NIHSS) score (�4 points),
Alberta Stroke Program Early CT (ASPECTS20)
score (�2 points) and stroke laterality. Standardized
mean differences (SMD) were calculated for each
matched variable.

Interventional procedures

All steps in the mitochondrial isolation and transplan-
tation process adhered to good manufacturing practice
(cGMP) standards,21–23 ensuring a sterile environment
and quality control. This included the preparation of
cGMP-compliant reagents, documentation of lot num-
bers, and maintenance of sterility logs. Due to the acute
clinical setting and the limited timeframe for interven-
tion, these protocols were optimized to provide
high-quality, viable mitochondrial isolates within the
constraints of rapid preparation and transplantation.
All solutions and tissue samples were kept on ice to
maintain mitochondrial viability during the isolation
process. Trained personnel conducted sterility testing,
purity assessment, and viability assays, with detailed
documentation maintained throughout to ensure
traceability.

During femoral arterial access for mechanical
thrombectomy, blunt dissection was performed at the
vascular access site to collect approximately 0.1 grams
of skeletal muscle tissue.22,24 The sample was processed
in the procedure suite within a sterile workstation.
Mitochondria were then isolated per validated proto-
col.9,22,25–27 Briefly, a 1M K-HEPES stock solution
(pH 7.2, adjusted with KOH), a 0.5M K-EGTA
stock solution (pH 8.0, adjusted with KOH), a 1M
KH2PO4 stock solution, and a 1M MgCl2 stock solu-
tion were made. The Homogenizing Buffer contained
300mM sucrose, 10mM K-HEPES (pH 7.2), and
1mMK-EGTA, while the Respiration Buffer consisted
of 250mM sucrose, 2mM KH2PO4, 10mM MgCl2,
20mM K-HEPES (pH 7.2), and 0.5mM K-EGTA
(pH 8.0). A 10� PBS stock solution was created
by dissolving 80 g of NaCl, 2 g of KCl, 14.4 g of
Na2HPO4, and 2.4 g of KH2PO4 in 1L of double-
distilled H2O (pH 7.4), then diluted to 1� PBS as
needed. Subtilisin A and BSA were prepared in 4mg
and 20mg aliquots, respectively, stored at �20�C, and
dissolved in 1ml of Homogenizing Buffer prior to use.
All buffers were sterilized by filtration through a 22-mm
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filter24 and stored at 4�C until use. Fresh tissue samples
were collected and stored in 1x PBS on ice, then
homogenized in 5ml of ice-cold Homogenizing Buffer
(300mM sucrose, 10mM K-HEPES at pH 7.2, and
1mM K-EGTA) using a gentleMACSTM Dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany) for
60 seconds. Next, 250 ml of the dissolved Subtilisin A
solution was added to the homogenate, which was
mixed by inversion and incubated on ice for 10 minutes
to aid in tissue dissociation. The homogenate was fil-
tered sequentially through 40 mm and 10 mm mesh
filters pre-wet with Homogenizing Buffer to remove
debris and ensure purity. The filtrate was then centri-
fuged at 9,000� g for 10 minutes at 4�C, and the super-
natant was discarded. A portion of the mitochondrial
pellet was reserved for quality assurance testing,
including mitochondrial number estimation using
hemocytometry, with counting performed under a
sterile-draped light microscope at 400� magnification
within the sterile workstation. The remainder of the
mitochondrial pellet was resuspended in 1ml of
Respiration Buffer and kept on ice until transplantation
(within 60 minutes) to preserve bioenergetic func-
tion.28,29 Specimens were not frozen to avoid potential
damage during the freeze-thaw cycle.30,31

Mechanical thrombectomy was performed at the site
of large-vessel occlusion per standard of care8,32 using a
microcatheter inserted through an 8-French guide cath-
eter positioned in the internal carotid artery ipsilateral
to the occlusion. During thrombectomy, the delivery
microcatheter was advanced distal to the occlusion in
the M2 segment of the middle cerebral artery (MCA),
which supplies approximately 70 g of brain tissue at
risk for ischemia.33–45 Based on the optimal dose of
2� 105 mitochondria per gram of tissue wet weight
established in cardiac studies,24,25,46,47 the calculated
effective dose would be equivalent to 1.4� 107 mito-
chondria per participant. For this first-in-human
brain study, safety considerations led to an IRB-
imposed maximum dose of 7� 106 mitochondria, half
of the calculated effective dose based on prior studies.
The IRB also stipulated that the total suspension
volume must not exceed 8mL. The volume of the trans-
plant infused was therefore kept consistent for all
participants, comprising approximately 0.1mg of mito-
chondrial protein, suspended in equal parts of
Respiration Buffer and non-ionic contrast solution.

Prior to transplant, a microinjection of 3mL of non-
ionic, iso-osmotic contrast solution48–53 (iodixanol)
was infused into the MCA branch distal to the occlu-
sion over 2 seconds, followed by a 3mL saline flush.
Mitochondria were then injected via the microcatheter,
followed by a 3mL saline flush. Continuous real-time
angiographic imaging of the cerebral vasculature was
performed throughout the infusion process to ensure

vessel patency. A follow-up angiogram through the
microcatheter was also performed to evaluate delayed
adverse effects.

Following transplantation, the thrombectomy pro-
cedure was completed according to the standard of
care, and all catheters were removed. The vascular
access site was closed percutaneously using a vascular
closure device and patients were given 2mg IV cefazo-
lin. All patients underwent immediate post-procedure
head CT and admission to the neurological intensive
care unit. Routine laboratory evaluations were con-
ducted daily for the first 48 hours and up to one
week, as part of both standard clinical monitoring
and systemic adverse event monitoring.

Safety endpoints and monitoring

Four safety endpoints were monitored: procedure-
related adverse events (AEs), vascular AEs, systemic
AEs, and access site AEs. Procedure-related AEs,
such as vessel occlusion, vasospasm, arterial dissection,
or embolization into a new territory, were detected via
real-time angiographic monitoring during thrombec-
tomy. Vascular AEs, including vessel re-occlusion,
hemorrhagic transformation, or infarct growth, were
identified through cross-sectional imaging (computed
tomography (CT) or MRI) performed within three
hours post-procedure. Systemic AEs were tracked
through routine laboratory testing of peripheral
blood samples. Physical examinations were conducted
up to six hours post-procedure to monitor for bleeding
and vascular access site AEs, including hematoma and
pseudoaneurysm formation.

Laboratory parameters—platelet count, white blood
cell (WBC) count, calcium, creatinine, and glucose—
were measured pre-procedure and at 24 and 48 hours,
consistent with standard of care for ischemic stroke
patients. When assessed at baseline, these values not
only assist in monitoring but also offer procedural
safety and predictive value for stroke patients who
undergo thrombectomy.54 Platelet count was measured
to assess the risk of hemorrhagic complications, with
thrombocytopenia increasing the likelihood of hemor-
rhagic transformation and poor procedural out-
comes.55–58 Elevated WBC count (leukocytosis) and
hyperglycemia both reflect systemic inflammation and
metabolic stress, which are associated with worsened
3-month functional outcomes, larger infarct sizes, and
increased risk of reperfusion injury.59–62 Total serum
calcium, measured rather than ionized or albumin-
corrected calcium due to its greater prognostic rele-
vance in ischemic stroke,63 was tracked for its role in
neuronal signaling and vascular function, where low
levels destabilize vascular integrity and can exacerbate
ischemic injury.64–66 Creatinine was measured to detect
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kidney dysfunction, particularly in relation to contrast-
induced nephropathy.67–70

Additionally, in patients with certain comorbidities
such as type 2 diabetes, combinations of these labora-
tory values, such as elevated WBC count and renal
dysfunction, have been associated with worse outcomes
and increased mortality after thrombectomy.71,72

Although markers such as C-reactive protein (CRP)
and lactate dehydrogenase (LDH) are known to reflect
systemic inflammation and tissue damage post-
thrombectomy, their levels can vary significantly in
the context of acute73–75 and post-reperfusion76,77

injury. Monitoring these markers was not included
due to their limited specificity for indicating unique
adverse events in this setting.

Mitochondrial quality assessment

Specimens were collected from AIS subjects as well as
from neurosurgery patients who underwent cerebrovas-
cular procedures but did not undergo transplant. The
protein concentration of each mitochondrial aliquot
was determined using the Bradford Assay78 (Bio-Rad
Laboratories, Hercules, CA, USA; 5000205) in a sterile
setting.79,80 One microliter (mL) of mitochondrial ali-
quot was mixed with 1mL of Bradford reagent. The
absorbance of the Bradford reagent solution was mea-
sured using a VWR V-1200 Spectrophotometer (VWR,
Radnor, PA, USA). If the absorbance fell outside the
linear range of 0.1–0.9 optical density (OD) units, the
sample was diluted or more sample was added until
the absorbance fell within the linear range. Protein con-
centration was calculated based on the known absor-
bance of 5 mg of bovine serum albumin (0.3 OD).78

Mitochondrial purity was assessed via transmission
electron microscopy (TEM).10,81–84 For ultrastructural
analysis, specimens were fixed in glutaraldehyde, post-
fixed in osmium tetroxide, and embedded in resin.
Ultrathin sections (�70 nm) were mounted on copper
grids and stained with uranyl acetate and lead citrate.
Images were acquired at 11,000�, 18,500� and
68,000� magnification using a FEI Tecnai G2 Spirit
BioTWIN electron microscope operating at 80 kV.
Given the time-sensitive nature of the clinical work-
flow, rapid assessment methods were employed, with
TEM samples preserved for future analysis.

Mitochondrial viability and function were evaluated
using the Resazurin Cell Viability Assay Kit
(alamarBlueTM) (Biotium, Fremont, CA, USA;
30025-1), following the manufacturer’s instructions.85–87

Fluorescence was measured with a Synergy H1 plate
reader (BioTek, Winooski, VT, USA), pre-incubated
to 37�C. Resazurin buffer solution was prepared by
mixing 1mL resazurin reagent with 9mL buffer,
100 ml of resazurin buffer solution was added to each

well of a 96-well plate, with 4mg mitochondria per well.

ADP (1mM) and glutamate/malate (5mM each) were

added to appropriate wells, and fluorescence was mea-

sured at excitation/emission 550/585 nm every minute,

over 20 minutes.
Membrane potential was assessed using tetramethyl

rhodamine methyl ester (TMRM, Thermo Fisher

Scientific, Waltham, MA, USA; T668). Mitochondria

were incubated with 500 nM TMRM and 5mM gluta-

mate/malate in buffer, and fluorescence was measured

at 540-nm excitation and 590-nm emission using a

BioTek Synergy H1 microplate reader at room temper-

ature. After carbonyl cyanide m-chlorophenyl hydra-

zone (CCCP, Sigma-Aldrich, St. Louis, MO, USA;

C2759) addition (1 mM final concentration) and

3-minute incubation, a second reading was taken.
Basal ATP concentration was measured using the

ATPliteTM luminescence assay kit (Perkin Elmer,

Waltham, MA, USA; 6016941), following the manu-

facturer’s instructions. ATP concentrations were

assessed using 5 replicates of 20 mg or 10 mg of mito-

chondrial protein.

Statistical analysis

Descriptive statistics, including mean, median, and

interquartile range (IQR), were used to summarize

the baseline characteristics of subjects and controls

for key variables such as age, NIHSS, ASPECTS,

and stroke subtype. Matching was performed using

pre-specified covariates, with SMD calculated to

assess balance between groups. Paired t-tests and

Wilcoxon signed-rank tests were employed to compare

laboratory values at baseline, 24 hours, and 48 hours

post-thrombectomy between subjects and controls,

while t-tests and Wilcoxon rank-sum tests were used

to analyze the relationship between procedure time

and safety outcomes. Fisher’s exact test was applied

to assess the association between thrombolytic use

and hemorrhage in controls.
Bootstrapping88,89 (1000 iterations) was performed

to estimate variability and generate confidence inter-

vals, with the dataset resampled with replacement

to create pseudo-replicates. Mean values from each

resample were calculated, and final results were pre-

sented as bootstrapped means with 95% confidence

intervals. P-values less than 0.05 were considered sta-

tistically significant. Analyses were conducted using

SAS version 9.4 (SAS Institute Inc.), R version 4.0.5

(R Foundation for Statistical Computing), and Python

version 3.8 (Python Software Foundation).
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Ethical considerations

The study was approved by the Institutional

Review Board at the University of Washington

(STUDY00006638) and adhered to the principles out-

lined in the Declaration of Helsinki, as well as relevant

federal and institutional guidelines for the protection of

human subjects. Written informed consent was

obtained from all participants or their legally autho-

rized representatives prior to enrollment in the trial.

A waiver of consent was granted for the retrospective

review of matched subject data.

Results

Participant characteristics

Four AIS subjects with MCA occlusion underwent

autologous mitochondrial transplantation during

thrombectomy. The ages of the subjects ranged from

43 to 80 years, consisting of three females and one

male. Initial NIHSS scores varied from 9 to 21, and

ASPECTS scores ranged from 6 to 7. Stroke subtypes

were categorized as either large artery atherosclerosis

(LAA) or cardioembolic (CE) according to prespecified

criteria.90

The matching process resulted in an effective bal-

ance between the subjects and controls across most

covariates. No significant differences were observed

between subjects and controls for any of the matched

variables, with p-values of 0.951 for age, 1.000 for sex,

0.887 for NIHSS, 0.625 for ASPECTS, and 0.505 for

stroke subtype (Table 1). The SMD were minimal for

age (SMD¼�0.035), sex (SMD¼ 0.000), and NIHSS

score (SMD¼�0.080), indicating strong comparability
between the groups for these variables. The ASPECTS
score had a slightly higher SMD (SMD¼ 0.339), while
stroke subtype showed the largest difference
(SMD¼�0.677).

Safety outcomes

No periprocedural events, post-procedure events, sys-
temic events, or access site complications were
reported. In the matched control group, two cases of
reperfusion hemorrhage were observed post-procedure
(001C and 003A). No other adverse events or compli-
cations were reported in the control group. Successful
reperfusion (defined by TICI> 2B)91 was achieved in
all subjects and controls. No significant difference in
procedure times was observed between subjects and
controls (p¼ 0.83).

Systemic monitoring

Laboratory values for platelets, WBC, calcium, creati-
nine, and glucose collected at presentation, 24 hours,
and 48 hours post-intervention, along with mean values
and corresponding p-values for comparisons between
groups at each time point for both mitochondrial trans-
plant subjects and their matched controls (Table 2).

Mitochondrial characterization

Quality assurance metrics showed that the mitochon-
drial isolation process produced active mitochondria,
indicating their viability at the time of transplantation
in AIS subjects. TEM revealed well-preserved mito-
chondrial morphology with intact double membranes

Table 1. Matching criteria of subjects and controls.

ID Age (Years) Sex (M/F) Intracranial occlusion (site) NIHSS ASPECTS Stroke subtype

Subject 001 43 F R MCA 16 7 LAA

Control 001 A 48 F R MCA 15 7 CE

Control 001B 46 F R MCA 12 5 CE

Control 001 C 46 F R MCA 13 7 CE

Subject 002 72 F R MCA 10 7 LAA

Control 002 A 71 F R MCA 14 6 CE

Control 002B 72 F R MCA 7 8 CE

Control 002 C 72 F R MCA 12 8 CE

Subject 003 80 M L MCA 21 6 CE

Control 003 A 80 M L MCA 20 6 CE

Control 003B 82 M L MCA 23 7 LAA

Control 003 C 78 M L MCA 22 6 LAA

Subject 004 48 F R MCA 9 6 CE

Control 004 A 48 F R MCA 12 5 CE

Control 004B 47 F R MCA 11 4 CE

Control 004 C 46 F R MCA 12 5 CE

ASPECTS: Alberta Stroke Program Early CT Score; CE: cardioembolic; F: female; L: left; LAA: large artery atherosclerosis; M: male; MCA: middle

cerebral artery; NIHSS: National Institutes of Health Stroke Scale; R: right.
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and cristae structure, indicating minimal contamina-

tion from non-mitochondrial components (Figure 1).
Mitochondrial function testing demonstrated high met-

abolic activity, as measured by resazurin reduction

assays, viability and function under experimental con-
ditions (Figure 2(a) and (b)). Mitochondrial membrane

potential, assessed using TMRM, was robust and

stable, indicating functional integrity and bioenergetic
capacity (Figure 2(c)).

Descriptive statistics across key metrics, including

protein concentration, ATP concentration, and mito-
chondrial counts, demonstrated consistency in the

results (Table 3). The bootstrapped confidence

intervals confirm minimal variability, with no signifi-

cant deviations observed in mean values between

samples.

Discussion

No safety endpoints were met in this Phase 1 trial of

autologous mitochondrial transplantation for AIS, and

no adverse effects on cerebral artery patency were

observed. Serial imaging and continuous monitoring

in study participants revealed no vasospasm, thrombo-

embolism, reperfusion injury, or hemorrhagic transfor-

mation. Post-procedure imaging and laboratory

Table 2. Laboratory values of subjects and matched controls.

Time point Parameter Reference range

Subjects

(Mean� SD)

Controls

(Mean� SD) P-value

Presentation Platelet Count 150–400� 103/mL 248.25� 42.72 259.75� 63.31 0.76

WBC 4.3–10.0� 103/mL 11.62� 5.02 10.09� 1.98 0.61

Calcium 8.9–10.2mg/dL 8.35� 0.24 9.02� 0.30 0.04

Creatinine 0.38–1.02mg/dL 0.83� 0.17 0.79� 0.20 0.72

Glucose 62–125mg/dL 126.25� 20.69 122.00� 9.87 0.79

24 Hours Platelet Count 150–400� 103/mL 270.25� 63.23 233.75� 42.77 0.29

WBC 4.3–10.0� 103/mL 11.17� 3.06 9.48� 1.10 0.38

Calcium 8.9–10.2mg/dL 8.10� 0.22 8.73� 0.21 0.04

Creatinine 0.38–1.02mg/dL 0.82� 0.20 0.75� 0.14 0.46

Glucose 62–125mg/dL 124.00� 24.83 105.42� 5.42 0.25

48 Hours Platelet count 150–400� 103/mL 239.50� 87.85 229.58� 49.64 0.85

WBC 4.3–10.0� 103/mL 8.45� 2.46 9.03� 1.55 0.67

Calcium 8.9–10.2mg/dL 8.12� 0.50 8.75� 0.23 0.16

Creatinine 0.38–1.02mg/dL 0.79� 0.25 0.73� 0.15 0.66

Glucose 62–125mg/dL 157.25� 85.78 107.50� 14.41 0.31

ATP: adenosine triphosphate; CI: confidence interval; IQR: interquartile range; pmol/mg: picomoles per milligram; mg: micrograms; mg/mL: micrograms

per microliter; SD: standard deviation; WBC: white blood cell.

Figure 1. Mitochondrial isolate from patient skeletal muscle tissue shows well-preserved mitochondrial morphology with minimal
contamination. Representative mitochondrial sample isolated from skeletal muscle tissue in patient undergoing mitochondrial
transplantation during thrombectomy. Electron microscope images of mitochondria in patient sample at (a) 11,000� magnification
(scale bar, 500 nm), (b) 18,500� magnification (scale bar, 500 nm), and (c) 68,000� magnification (scale bar, 100 nm).
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monitoring also showed no adverse events. The find-
ings further demonstrate the reliability and consistency
of the standardized21,22,24 sampling methods, with
reproducibility across subjects supporting the robust-
ness of the mitochondrial isolation process.

While these preliminary findings provide promising
safety insights, several key translational challenges
must be addressed for broader clinical application.
These challenges include localizing and verifying the
functionality of transplanted mitochondria within the
brain; determining the appropriate dose and frequency
for transplantation; optimizing the timing of the inter-
vention to prevent IRI; and addressing potential sys-
temic interactions and delivery methods.

In addition to localization, ensuring engraftment
and functionality of transplanted mitochondria is a
key challenge in determining the neuroprotective bene-
fits of mitochondrial transplantation and differentiat-
ing its effects from those of reperfusion alone. Unlike
cardiac applications, where real-time functional metrics
can be measured by echocardiography9, brain imaging
techniques such as perfusion MRI or spectroscopy are
delayed, complicating the differentiation between the

effects of the transplant and the benefits of recanaliza-
tion after thrombectomy.

Determining the appropriate dose, timing, and fre-
quency for transplantation is complex due to the lack
of in vivo data on human cortical mitochondrial func-
tion and energetic states in both healthy and diseased
conditions.33,34,93,94 The risks of intravascular volume
overload, thromboembolic events, and cerebral edema
complicate dosing strategies in the ischemic brain
during the procedure, while administering multiple
doses over time may further increase procedural risk
or impact the timing and effectiveness of revasculariza-
tion.46,47 The optimal window for mitochondrial trans-
plantation is likely during the acute phase of ischemia,
coinciding with reperfusion. However, there may be
benefits to delayed transplantation, particularly in the
subacute phase, as the blood-brain barrier remains per-
meable for up to several weeks.95–97 This could be par-
ticularly relevant for patients with large volumes of
ischemic brain tissue or core infarct, where the risks
associated with dosing strategies are heightened, but
the potential benefits related to mitigating reperfusion
injury may also be significant. Balancing the risks and

Figure 2. Functional testing of mitochondrial isolates demonstrates high metabolic activity. (a) Resazurin assays were performed on
mitochondrial isolate from patient muscle tissue, incubating 4 mg mitochondria with or without 5mM glutamate/malate each. Data
from representative wells are shown. Background indicates wells with resazurin reagent only. (b) The difference between maximum
and minimum resazurin fluorescence in each well is shown, data from five technical replicates were averaged. Error bars indicate
standard deviation. (c) TMRM was incubated with mitochondrial isolate in respiration buffer alone or with 5mM glutamate/malate
each. CCCP was added after the initial read and incubated for 3 additional minutes.

Table 3. Summary of mitochondrial characterization.

Metric (units) QA sample (Mean� SD) Calculated transplant (Mean� SD)

Total protein (mg) 333.75� 41.36 1,335� 165.44

ATP concentration (pmol/mga) 2.94� 1.13 11.77� 4.52

Estimated mitochondria (number) 333,750� 41,360 1,335,000� 165,440

aATP concentration is reported as pmol/lg of protein, representing measurements from QA aliquots taken prior to any further processing or

administration. This baseline level aligns with expected viability benchmarks for isolated mitochondria and is comparable to the reported values of ATP

amount per microgram of protein.92
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benefits of acute versus delayed interventions, along
with potential repeated mitochondrial dosing, is an
area of ongoing research.

The potential for allogeneic mitochondrial trans-
plantation98–101 is compelling, as it could broaden
availability and shorten the time required for isolation
and preparation. Products like mitochondria organelle
complex-Q (MRC-QTM, LUCA Science, Tokyo,
Japan), which can be frozen for distribution and stor-
age, offer a practical solution. While preclinical stud-
ies101–103 have shown success, their application in
human trials remains unexplored.

Another significant challenge lies in the route of
mitochondrial delivery. Intra-arterial delivery offers
targeted therapy to specific arterial territories but car-
ries invasive risks, while systemic dispersion via intra-
venous delivery may require larger doses, increasing the
potential for off-target effects. Optimizing or combin-
ing these delivery methods will be important in the
design of future trials.

Conclusion

This Phase 1 study demonstrated that autologous mito-
chondrial transplantation during mechanical throm-
bectomy for AIS is safe. The standardized methods
for mitochondrial isolation and quality testing con-
firmed the viability and functionality of the isolated
mitochondria, consistent with previous findings. This
study represents the first use of mitochondrial trans-
plantation in the human brain, highlighting specific
logistical challenges related to the acute clinical setting,
such as limited tissue samples and constrained time for
isolation and transplantation. Ongoing research and
rigorous scientific exploration will refine and support
the clinical translation of mitochondrial transplanta-
tion in the context of acute cerebral ischemia and
beyond.
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