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Summary Alzheimer’s disease (AD) includes etiologically heterogenous disorders characterized by senile or
presenile dementia, extracellular amyloid protein aggregations containing an insoluble amyloid precursor protein
derivative, and intracytoplasmic tau protein aggregations. Recent studies also show excess neuronal aneuploidy,
programmed cell death (PCD), and mitochondrial dysfunction. The leading AD molecular paradigm, the “amyloid
cascade hypothesis”, is based on studies of rare autosomal dominant variants and does not specify what initiates
the common late-onset, sporadic form. We propose for late-onset, sporadic AD a “mitochondrial cascade
hypothesis” that comprehensively reconciles seemingly disparate histopathologic and pathophysiologic features. In
our model, the inherited, gene-determined make-up of an individual’s electron transport chain sets basal rates of
reactive oxygen species (ROS) production, which determines the pace at which acquired mitochondrial damage
accumulates. Oxidative mitochondrial DNA, RNA, lipid, and protein damage amplifies ROS production and triggers
three events: (1) a reset response in which cells respond to elevated ROS by generating the b-sheet protein, beta
amyloid, which further perturbs mitochondrial function, (2) a removal response in which compromised cells are
purged via PCD mechanisms, and (3) a replace response in which neuronal progenitors unsuccessfully attempt to re-
enter the cell cycle, with resultant aneuploidy, tau phosphorylation, and neurofibrillary tangle formation. In
addition to defining a role for aging in AD pathogenesis, the mitochondrial cascade hypothesis also allows and
accounts for histopathologic overlap between the sporadic, late-onset and autosomal dominant, early onset forms
of the disease.

�c 2004 Elsevier Ltd. All rights reserved.
Introduction

As described by Alois Alzheimer in 1906 and
named by Emil Kraepelin in 1910, Alzheimer’s
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disease (AD) applied to a state of presenile de-
mentia, extraneuronal protein aggregations (pla-
ques), and intraneuronal protein aggregations
(tangles) [1,2]. Although it was recognized at the
time that brains of persons with senile dementia
could also manifest plaques and tangles, in the
elderly this was not felt to represent an actual
disease state [3–6].
ved.
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In the latter half of the 20th century, the AD
spectrum expanded to include all plaque and tan-
gle dementias regardless of age [7–10]. It was
further proposed that this now common neurode-
generative condition was not a consequence of
either normal or accelerated aging, but rather
distinctly abnormal pathophysiologic events. To
clarify the nature of this abnormal pathophysiol-
ogy, investigators elucidated genetic defects un-
derlying multiple (albeit rare) families with
autosomal dominant, early onset forms. It was
found mutation of the amyloid precursor protein
(APP) gene and two other genes likely involved with
APP processing, presenilin 1 and presenilin 2, cause
presenile dementia with plaque formation [11–13].
In particular, the ability of APP mutation to cause
an AD-consistent clinical and histopathologic phe-
notype justified the “amyloid cascade hypothesis”
[14,15]. According to this hypothesis, the primary
event in AD neurodegeneration is production of the
beta amyloid (Ab) derivative of APP [16–18].

Accumulating evidence suggests that although
the amyloid cascade hypothesis is potentially (if
not likely) viable in cases of APP, presenilin 1, or
presenilin 2 derived AD, it may not apply in its
current form to the late-onset, sporadic type of the
disease (the vast majority) [19]. First, persons with
the common form of AD generally lack mutations of
these genes, and so it is unclear what initiates
plaque formation in such cases. Second, plaques
are a relatively common finding in the non-de-
mented elderly [20–22]. Third, pathways through
which plaques generate tangles and other recently
described AD pathophysiology are unknown. This
includes neuronal apoptosis, neuronal aneuploidy,
and cerebral/extracerebral mitochondrial dys-
function [19,23–25].

AD is now identified as a “disease of aging”,
which implies aging itself is not a disease (other-
wise the term is an oxymoron). This semantic trap
requires one to overlook the fact that boundaries
between late-onset AD and “normal” aging are not
absolute. Neuropsychologic test performance de-
cline, brain atrophy, neuronal loss, and plaque/
tangle deposition all occur with aging in the ab-
sence of frank dementia [26]. For late-onset AD,
therefore, it is reasonable to place the causal
molecular events within an aging spectrum, rather
than consider them distinct disease phenomena. By
this logic, some individuals are “set” to develop
sporadic AD at a relatively young age, others at an
intermediate age, and yet others only at a very
advanced age.

We now propose a hypothesis that places AD
within the context of developmental and aging
theory. The hypothesis takes into account current
molecular knowledge of cell division, differentia-
tion, de-differentiation, and demise. We first re-
view relevant scientific principles.
The cell cycle, redox status, and
reactive oxygen species

All nucleus-endowed cells contain genetic pro-
grams that allow for their division and execution.
Recent data suggest a single mediator, the cell
redox state (which is reflected by ratios of partic-
ular oxidized and reduced substrate variants, such
as NADþ and NADH), and by extension reactive
oxygen species (ROS), regulates the balance be-
tween these diametric processes [27–30]. The
main determiner of intracellular ROS and overall
cell redox states is the mitochondrial electron
transport chain (ETC) [31–33]. In experimental
systems, limited ROS (H2O2 and O�

2 ) exposures in-
duce multiple cell types to enter the proliferation
cycle, while increasing ROS amounts above such
limited thresholds activates apoptotic cell death
pathways [34]. Redox status and ROS levels outside
ranges specifically associated with either cell pro-
liferation or cell demise are found in cells that are
neither dividing nor dying, but rather existing in a
stable state of physiologic growth arrest (“G0”).
Stem or progenitor cells comprise a unique cate-
gory of cells that can undergo growth arrest, yet do
not lose their ability to pass through the cell cycle
[35].

The avascular status of a developing organism
during embryogenesis limits aerobic metabolism.
Thus, the expanding, unperfused cell mass must
flourish under relatively anaerobic conditions [36].
It is by necessity over-reliant on glycolytic (anaer-
obic) metabolism, which generates NADH. Mito-
chondrial ROS production is limited [37].
Accordingly, when embryo cells are delivered from
mitosis (“M”) into the initial “gap” period (G1) of
interphase, ROS and NADþ/NADH regulation signals
are not set to prompt the cell’s exit from repro-
ductive cycling [38,39]. G0 status is not achieved,
G1 proceeds, and proteins ultimately necessary for
cell division are produced. Subsequent DNA repli-
cation (in the “S” phase) results in tetraploidy.

Cells reaching the post-S phase “second gap”
(G2) are not obligated to proceed from interphase
to mitosis (“G2-M arrest”). The bioenergetic status
of the cell, in particular, regulates whether pas-
sage from G2 to M occurs. Low ATP levels are as-
sociated with G2-M arrest [40,41].

When mitosis does occur, microtubules form
spindles that appropriately segregate chromosomes
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into daughter nuclei. Tau protein is likely relevant
to cell cycling physiology at this point, because as a
microtubule-associated protein it is designed to
bind microtubules [42]. This transpires whether
microtubules act as cytoskeletal elements in dif-
ferentiated cells or mitotic spindles in undifferen-
tiated cells [43]. In the rapidly dividing cells of
developing organisms, tau is present in a phos-
phorylated state (fetal tau). Tau phosphorylation is
therefore seen not only in the neurofibrillary tan-
gles of AD and normal aging, but also during early
development and, in general, mitotic cells
[26,42,44–46].
Mitochondria: relation to aging, cell
death, and APP

A “mitochondrial” or “free radical” theory of aging
derives from data suggesting (1) ETC activity de-
clines with age [47–50], and (2) mitochondrial-
based oxidative stress increases with age [51–61].
The underlying basis for this age-dependent mito-
chondrial decline is controversial. Some emphasize
mitochondrial DNA (mtDNA) deletions and point
mutations accumulate with age, perhaps due to
oxidative stress [57,58,62–69]. Detractors counter
demonstrable mutational burdens are low, and
question their phenotypic significance [70]. Some
argue within post-mitotic cells malfunctioning mi-
tochondria have a replicative advantage, and
thereby assume an ever-increasing proportion of
the total cell mitochondria [71,72]. Others hy-
pothesize damaged mitochondria are favored be-
cause of reduced degradation rates [73–75].

Mechanistic issues notwithstanding, oxidative
stress does appear to influence longevity. Life ex-
tension occurs in fruit flies engineered to better
detoxify the free radical byproducts of oxidative
metabolism [76]. Experimental caloric restriction
in animals also extends life span, perhaps by indi-
rectly reducing oxidative metabolism-related oxi-
dative stress [77,78].

Recent data now implicate mitochondrial dys-
function as an initiating event in apoptotic pro-
grammed cell death (PCD) pathways [79,80]. In the
“intrinsic” apoptosis pathway, when mitochondrial
depolarization, oxidative stress, or bioenergetic
failure surpasses a threshold, permeability transi-
tion is triggered. This allows efflux of molecules
typically sequestered within the mitochondrial
compartment, and subsequent activation of cell
death cascades [81–86].

Proteins that affect ETC function may influence
mitochondrial ROS production [87–89]. In this re-
spect APP is relevant, since it is partly targeted to
mitochondria and under pathologic conditions may
induce ETC dysfunction and alter oxidative stress
levels [90]. Oxidative stress, in turn, can induce
soluble proteins to adopt insoluble b-pleated sheet
conformations, or else yield b-sheet derivatives.
Interestingly, precedent exists for the insertion of b-
sheet proteins in mitochondrial membranes, where
they are predicted to form pores [91]. It is tempting
to consider existence of a feedback loop, in which
mitochondria overproducing ROS initiate confor-
mational changes in local proteins that then “shut
down” the mitochondria that drive their formation.

The ability of the APP derivative Ab to complex
elemental and organic cations may also serve to
alter mitochondrial function. Ab is a b-sheet “bio-
bioflocculant” that chelates organic and elemental
iron and copper, redox-active metal ions abundant
in mitochondria [92]. Attomolar concentrations of
iron and copper induce monomeric Ab to oligo-
merize, forming insoluble precipitates that in turn
sequester the ions that enable their aggregation
[93]. As copper and iron are required for electron
transport, chelation of these ions may indirectly
inhibit oxidative phosphorylation. In indirect sup-
port of this are two findings: (1) micromolar con-
centrations of Ab(25–35) peptide have no effect on
cells that do not possess a functional ETC [94], and
(2) glycolytic upregulation ameliorates Ab toxicity
by decreasing cell reliance on oxidatively derived
ATP production [95]. Subsequent extracellular se-
cretion of metal-chelated Ab from the cytoplasm
via the Golgi apparatus would predictably give rise
to insoluble amyloid plaques, which presumably
would activate local gliosis and microglial invasion.

Pre-translational mRNA oxidation may also con-
tribute to a protein aggregation diathesis in both
aging and AD [96,97]. Peptides produced from ox-
idized mRNA species are more likely to aggregate
than peptides produced from non-oxidized mRNA
species [98]. Excessive mRNA oxidation is observed
in AD brain, but appears to represent a highly se-
lective process that affects only particular tran-
scripts [98]. This selectivity may arise from the fact
that translation is a cytoanatomically specific
event. Indeed, as is the case with yeast, in human
cells certain mRNA species are translated by ribo-
somes that reside tethered to the mitochondrial
outer membrane [99–101]. In the case of increased
mitochondrial ROS production, peri-mitochondrial
translation would promote cytoanatomically se-
lective mRNA free radical exposure, with sub-
sequent aggregation of the translational products.
To date, however, it remains to be shown that
APP and tau mRNA from AD brain exhibit excessive
oxidation [98].
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One final point about ROS production is in order.
ROS are an unavoidable byproduct of cell metabo-
lism. Cell metabolism, in turn, is defined by the
interplay between multiple interdependent en-
zyme systems that are designed to facilitate sub-
strate cycling. Compromise of one biochemical
system tends to induce compensatory (although
not necessarily advantageous) changes in other
systems. In addition to the mitochondrial ETC,
other sites and enzyme systems participate in the
redox cycling reactions that maintain appropriate
cell NADþ/NADH ratios. These include cytoplasmic
glycolysis and lactate production, fatty acid 9-ox-
idation and conversion of pyruvate to acetyl CoA in
the mitochondrial matrix, peroxisomal oxidation of
fatty acids, and activity of the plasma membrane
oxidoreductase system. Further, it appears that
diminished redox cycling by the mitochondrial ETC
is associated with increased redox cycling at other
cell sites, specifically the plasma membrane oxi-
doreductase complex [102–104]. “Shifting” of
certain redox chemical reactions from one cell lo-
cale to another facilitates conservation.

Cytoanatomic redox shifts are seen in various
cell types and under various conditions. Cells that
lack a functional ETC because of mtDNA depletion
(q0 cells) show elevated plasma membrane ROS
production [102,103]. Tumor cells are also char-
acterized by low levels of cytoplasmic ROS and
elevated levels of plasma membrane ROS
[105,106]. Specific ETC enzyme activities and
overall oxidative phosphorylation are reduced in
tumor cells [107]. Similar mechanisms may also
apply to non-tumor hepatocytes, in which reduced
oxidation phosphorylation capacity is part of a
physiologic “de-differentiation” process that oc-
curs when local tissue repair responses are acti-
vated [108]. Taken together, these findings are
consistent with the view that relatively anaerobic/
glycolytic cells are capable of cell division, and
shift redox maintenance from the mitochondrial
ETC to the plasma membrane oxidoreductase
system.
Mitochondrial function in development
and aging

The most distinctive feature of mitochondria is
their ability to perform electron transport. Evolu-
tion has facilitated the development of several ETC
enzyme complexes for this purpose. Four particular
ETC complexes (I, II, III, and IV) harness energy
from mobilized free electrons, and use this energy
to drive proton translocation. An additional com-
plex (V) allows protons to re-access the matrix,
and couples energy from this proton flux to ADP
phosphorylation.

Multimeric ETC complexes contain protein sub-
units that derive from two cell genomes, the nu-
clear and mitochondrial. For example, 7 of the
over 40 proteins that comprise complex I are mi-
tochondrial DNA (mtDNA) encoded. One of 11
complex III, three of 13 complex IV, and two of 14
complex V subunits also arise from mtDNA.

There is substantial polymorphic variability in
both the mtDNA and nuclear DNA (nDNA) ETC sub-
unit genes [109,110]. These polymorphisms fre-
quently alter amino acids. With so many
polymorphic genes giving rise to participant pep-
tides, considerable ETC structural variation exists
between individuals. Emerging data indicate this
variability may influence a spectrum of ontologic
events, including development, aging, and neu-
rodegeneration [111–114]. Current paradigms
emphasizing mitochondrial contributions to em-
bryogenesis, aging, and PCD implicate mitochon-
drial ROS as a crucial intermediate in each case.
Indeed, a small percentage (1–4%) of electron
transfer normally goes towards production of the
superoxide radical [53,60]. Although classically
considered detrimental in any form, there is an
emerging consensus that ROS in physiologic
amounts are required to regulate intracellular sig-
naling mechanisms [115,116].

ETC efficiency therefore determines an individ-
ual’s basal ROS production rate. ETC efficiency, in
turn, is likely influenced by the large number of
polymorphism combinations generated by the over
80 ETC peptide-encoding genes of mtDNA and
nDNA. Basal ROS production is potentially relevant
to the rate at which mitochondrial oxidative dam-
age accumulates in an individual over time. Spe-
cifically, over the course of physiologic aging
mtDNA progressively acquires deletion and point
mutations [57,58,62,64,65,67]. Precedents exist
that show somatic mtDNA mutation influences ETC
function [117–119].
Unifying hypothesis for AD
histopathology and pathophysiology

We believe low rates of mitochondrial oxidative
phosphorylation, increased reliance on anaerobic
glycolysis, and high rates of mitochondrial ROS
production ultimately account for, either directly or
indirectly, the histopathologic and pathophysiologic
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features of sporadic, late-onset AD. We therefore
propose a unifying “mitochondrial cascade
hypothesis” for this form of the disorder. In
formulating the hypothesis, we considered recent
data on cell cycle regulation, programmed cell
death dynamics, ROS-mediated protein modifica-
tion, and ROS-mediated DNA modification. Much
of this data post-dates introduction of the mito-
chondrial theory of aging and amyloid cascade
hypothesis. Accordingly, we attempted to update
these two constructs within the context of an
advancing body of knowledge. Whenever possible,
we modify rather than discard aspects of both
constructs, and synthesize the most relevant
parts into a comprehensive whole. The mito-
chondrial cascade hypothesis for sporadic, late-
onset AD maintains:

(1) Inherited polymorphic variations in the mtDNA
and nDNA genes that encode ETC subunits de-
termines ETC efficiency and basal mitochon-
drial ROS production;

(2) A correlation exists between basal mitochon-
drial ROS production rates and accumulating
mtDNA damage, with higher basal ROS produc-
tion rates causing more rapid accumulation of
mtDNA damage;

(3) Somatic mtDNA mutation decreases mitochon-
drial ETC efficiency from its inherited set point,
which manifests as reduced oxidative phos-
phorylation and/or increased mitochondrial
ROS production. This triggers a three part com-
pensatory response-
(a) Reset the system: mitochondrial ROS

overproduction in terminally differenti-
ated neurons triggers Ab production from
APP, which further reduces ETC activity.
Cell redox activities may eventually shift
to the plasma membrane oxidoreductase
system, where excess plasma membrane
ROS would increase extracellular Ab pro-
duction and contribute to amyloid plaque
formation.

(b) Remove the most dysfunctional cells: ap-
optosis is activated in terminally differen-
tiated neurons that continue to manifest or
go on to manifest suprathreshold ROS and/
or subthreshold oxidative phosphorylation.

(c) Replace lost cells: impaired mitochondrial
oxidative phosphorylation increases cell re-
liance on anaerobic glycolysis, initiating
hypoxic signaling and also altering ROS
homeostasis. In neurons with residual pro-
liferativeability, this provides a signal for re-
entry intomitotic cycling.Cell cycle re-entry
ultimately fails (perhaps due to bioenergetic
considerations), but before or during G2-M
arrest there is cyclin protein upregulation,
DNA synthesis/aneuploidy, tau phosphory-
lation, and tangle formation. These cells
eventually loseviabilitynotfromtheirfailure
to complete the cell cycle per se, but rather
from the underlying mitochondrial dysfunc-
tion that prompted cell cycle re-entry in the
first place.

We intend the mitochondrial cascade hypothesis
to apply only in cases of sporadic, late-onset AD.
For the early onset, autosomal dominant cases that
arise from mutation of APP, presenilin 1, or
presenilin 2, we see no reason to challenge the
ascendancy of the amyloid cascade hypothesis. At
the same time, our hypothesis predicts mitochon-
dria should occupy a relatively upstream position in
the amyloid cascade hierarchy, rather than the
peripheral, downstream location most reviews
typically ascribe them [17,18]. This view is con-
sistent with tissue culture data indicating ETC
function is requisite for Ab toxicity. The fact that
Ab does not harm cells artificially depleted of
mtDNA (and as a consequence lack a functional
ETC) potently argues direct Ab-mitochondria in-
teractions are highly relevant in autosomal domi-
nant AD [94].

We propose bioenergetic dysfunction and mito-
chondrial ROS overproduction represents a nexus
between the mitochondrial cascade hypothesis of
sporadic AD and the amyloid cascade hypothesis
(which we feel is most likely to apply in early on-
set, autosomal dominant cases). Further, the mi-
tochondrial cascade hypothesis helps address some
of the more poorly defined aspects of the amyloid
cascade hypothesis, such as the mechanisms
through which Ab production might drive neurofi-
brillary tangle formation. Mitochondrial dysfunc-
tion also results in synaptic degradation [120], and
our hypothesis provides a mechanism through
which both sporadic, late-onset and autosomal
dominant, early onset AD cases acquire synaptic
pathology.

Two essential features distinguish the mito-
chondrial and amyloid cascade hypotheses. First,
unlike what is the case with the early onset, au-
tosomal dominant forms of AD, in sporadic,
late-onset AD the defining histopathology and
pathophysiology are initiated by mitochondrial
dysfunction. Second, in sporadic, late-onset AD,
increased Ab production may represent a com-
pensatory event occurring in response to the
primary mitochondrial pathology, while in early
onset, autosomal dominant AD Ab production is
strictly a toxic phenomenon.



Figure 2 Mitochondrial dysfunction initiates compensatory events that result in the histopathologic sequelae of AD.
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Figure 3 The mitochondrial cascade hypothesis for late-onset, sporadic AD. A key difference between late-onset,
sporadic AD and early-onset, autosomal dominant AD is that in the early, autosomal dominant forms of the disorder Ab
formation is the primary pathologic event, and causes secondary mitochondrial dysfunction (indicated by the asterisk).
In the mitochondrial cascade hypothesis, mitochondrial dysfunction ultimately causes the pathology indicated in steps
5–7. In the amyloid cascade hypothesis mitochondrial dysfunction leads to the pathology of steps 6 and 7.

Alzheimer’s disease 1313
Key points of the mitochondrial cascade hy-
pothesis are emphasized in Figs. 1 and 2. Fig. 1
summarizes components that derive from cell
cycling and differentiation theory and relates them
to the aging process. Fig. 2 addresses how mito-
chondrial dysfunction gives rise to AD histopathol-
ogy. Fig. 3 synthesizes both aspects into one
construct, and indicates the proposed point of
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overlap between the mitochondrial and amyloid
cascade hypotheses.
Support for the hypothesis

Data supporting a role for mitochondria and, in
particular, mtDNA in aging and age-related dis-
eases are generally consistent with the first part of
the AD mitochondrial cascade hypothesis (Fig. 1).
Some of these data derive from basic epidemio-
logic studies of aging. Longevity analysis of the
Framingham cohort, for instance, reveals that al-
though the best predictor of an individual’s lon-
gevity is biparental longevity, maternal longevity
carries a greater impact [121]. Epidemiologic
studies of both AD and PD further suggest for sub-
jects that have a parent with the disease, among
the affected parents there is maternal overrepre-
sentation [122–124]. Taken together, these studies
argue that a maternally inherited genetic factor
(mtDNA) helps determine how long one lives, as
well as contributes to AD risk.

Some studies suggest mtDNA haplogroups (which
are defined by mtDNA polymorphism patterns) in-
fluence longevity. In northern Italy, haplogroup J is
present to statistical excess in centenarians [112].
Certain mtDNA polymorphisms are more common in
the extremely old than they are in the general
population [113]. Mitochondrial DNA haplogroup
variations may also affect an individual’s odds of
developing a neurodegenerative disease. One re-
cent study of mtDNA polymorphisms in Parkinson’s
disease (PD) found that mtDNA haplogroups J and K
(which share a common SNP 10398G polymorphism)
are associated with a robust PD risk reduction [114].

Cytoplasmic hybrid (“cybrid”) studies of persons
with various sporadic neurodegenerative diseases
also argue mtDNA inheritance at least partly de-
termines mitochondrial ETC efficiency, oxidative-
phosphorylation capacity, and ROS production.
Cybrid cell lines are generated when mtDNA from a
designated subject are expressed within cultured
cells depleted of endogenous mtDNA [125,126].
This technique allows explorations of mitochon-
drial genotype–phenotype relationships while
controlling for nDNA variability. If cybrid cell lines
with a common nuclear background but mtDNA
from different donors have distinct mitochondrial
phenotypes, the root cause is likely differences
between the donor mtDNAs [127].

Relative to cybrids expressing mtDNA from age-
matched control individuals, cybrids expressing
mtDNA from AD, PD, amyotrophic lateral sclerosis
(ALS), and progressive supranuclear palsy subjects
show bioenergetic impairment and increased oxi-
dative stress [128–139]. These cybrid lines also
exhibit altered calcium homeostasis, mitochondrial
membrane potential depolarization, abnormal mi-
tochondrial morphology, molecular stress response
pathway activation, increased activation and
expression of apoptotic proteins, and excessive
protein aggregation (including Ab in AD cybrids and
a-synuclein in PD cybrids) [128,132,134, 136,
40–149]. Interestingly, mtDNA used to generate
cybrid cell lines in these experiments is derived not
from brain but rather from platelets, a non-de-
generating tissue. This suggests the relative func-
tional impairment observed in cell lines with
disease subject mtDNA represents a systemic de-
fect. Systemic mitochondrial dysfunction is more
consistent with inherited rather than somatic
mtDNA aberration.

To date, only limited published data indicate
inherited mtDNA variation influences somatic
mtDNA mutation acquisition [61]. There is, how-
ever, considerable evidence showing mtDNA does
acquire mutations during the course of an indi-
vidual’s lifespan, including the brain, the tissue
with the greatest rate of oxidative metabolism
and therefore ROS production [65,67,150,151].
Over a decade ago it was shown that mtDNA de-
letions (specifically, a particular 5 kb deletion
called the “common deletion”) accumulate with
age [152–156]. Tissues with lower rates of oxida-
tive mutation than brain acquire less deletion
burden. More recently, investigators have uncov-
ered an entire layer of age-dependent mtDNA
mutation in the brains of deceased individuals
[67,157]. These presumed somatic mutations are
not detected using routine sequencing strategies,
but rather require laborious clonal mtDNA analy-
sis. It is currently unclear whether these mutations
represent low abundance “microheteroplasmy”
that is widely distributed between many or most
cells of a brain parenchyma region, or if it arises
from limited numbers of individual cells that carry
unique homoplasmic mutations. These scenarios,
however, may not be mutually exclusive, since
somatic mutations (that by definition are in low
abundance when they arise) tend to clonally
expand towards high abundance intracellular
heteroplasmy or even homoplasmy [158–160].
Ultimately, through either clonal expansion or
“compound microheteroplasmy”, mtDNA muta-
tional burdens within individual cells may reach
thresholds at which the resultant mitochondrial
dysfunction becomes critical.

There is some debate as to how aging effects
mitochondrial ETC function. Data supporting an
age-related decline are strongest for liver, and
also indicate a similar phenomenon in muscle,
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fibroblasts, and brain [161–170]. The status of
brain mitochondria ETC function has also been
extensively evaluated in subjects with neurode-
generative disorders. Relevant to this discussion is
the well-replicated finding that complex IV (cyto-
chrome oxidase) activity is reduced in AD brain
[19]. Some argue this is an epiphenomenal conse-
quence of neuronal de-afferentation. Indeed, it has
been shown that surgically de-afferented neurons
downregulate cytochrome oxidase [171,172]. The
mechanistic explanation for this is that de-affer-
ented neurons have reduced synaptic connections,
less synaptic activity, and require less ATP to
maintain ion gradients across their membranes.
This cannot entirely explain the AD cytochrome
oxidase deficit, which is also present in sporadic AD
subject platelets and fibroblasts [173–178].

One AD chicken-and-egg controversy revolves
around whether mitochondrial dysfunction causes
Ab over-production, or whether Ab over-production
causes mitochondrial dysfunction. When viewed
outside the charged confines of the AD debate, it
certainly seems clear that cytochrome oxidase in-
hibition promotes amyloidgenic fragmentation of
APP, and that Ab inhibits cytochrome oxidase
[179–183]. For the sporadic late-onset forms,
available data argue amyloidgenesis follows mito-
chondrial dysfunction. Specifically, in sporadic AD
mitochondrial dysfunction is more anatomically
widespread than is Ab deposition, and therefore
mitochondrial dysfunction cannot entirely be ac-
counted for by Ab [19]. Further, cybrid cell lines
that express mtDNA from AD subjects, in addition to
showing reduced cytochrome oxidase activity and
increased ROS production relative to control cybrid
lines, also produce substantially increased amounts
of both intracellular and extracellular Ab [19,146].

AD brain shows evidence of increased apoptotic
cell death, cyclin protein expression, and nuclear
DNA replication with excess aneuploidy [23–25].
The concept that tau phosphorylation promotes
tangle formation in neurons attempting to re-enter
the cell replication cycle is not novel [24], nor is
the idea that mitochondrial function can determine
tau phosphorylation. Indeed, tau phosphorylation
is promoted in AD fibroblasts exposed to an ETC
uncoupler [184].
Conclusion

The mitochondrial cascade hypothesis provides a
unifying framework for AD pathology. In developing
this hypothesis, we approached sporadic AD from
an aging theory perspective, since sporadic AD in-
cidence and prevalence progressively rise at least
into the ninth decade [185]. Indeed, if half those
over age 85 meet criteria for AD [186], can it truly
be considered a disease?

Our hypothesis posits mitochondrial dysfunction
represents primary pathology in sporadic, late-on-
set AD, and drives both Ab plaque and neurofibril-
lary tangle formation. We further provide a
rationale for how mitochondrial dysfunction sur-
passing certain thresholds triggers compensatory
events that cause the various histopathologic and
pathophysiologic features of AD. Other sporadic
neurodegenerative diseases also manifest mito-
chondrial dysfunction, oxidative stress, and protein
aggregation [127,187,188]. It is tempting to con-
sider whether similar principles may underlie these
disorders at the molecular level.
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